Evaluation of the Fluence to Dose Conversion Coefficients for High Energy Neutrons Using a Voxel Phantom Coupled with the GEANT4 Code
نویسندگان
چکیده
Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the male adult voxels phantom MAX, developed in the Nuclear Energy Department of Pernambuco Federal University in Brazil, has been coupled with the Monte Carlo simulation code GEANT4. This toolkit, distributed and upgraded from the international scientific community of CERN/Switzerland, simulates thermal to ultrahigh energy neutrons transport and interactions in the matter. The high energy neutrons are pointed as the component that contribute about 70% of the neutron effective dose that represent the 35% to 60% total dose at aircraft altitude. In this research calculations of conversion coefficients from fluence to effective dose are performed for neutrons of energies from 100 MeV up to 1 GeV, irradiating MAX with mono-energetic beams in the mode Anterior-Posterior. An alternative methodology is developed too, using the atmospheric neutrons spectrum simulated with GEANT4 code at aircraft altitude instead of the traditional method that uses monoenergetic beams. To obtain the neutrons spectrum 1.5× 105 extensive atmospheric showers are simulated by cosmic rays interactions with atmospherics atoms. The main characteristics of the spectrum are in agreement with literature confirming the validity of GEANT4. For 100 MeV energy the conversion coefficient calculated with spectrum shows a decrease of 8%, pointing out the importance of the environment influence.
منابع مشابه
Evaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code
Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...
متن کاملEvaluation of Electron Specific Absorbed Fractions in Organs of Digimouse Voxel Phantom Using Monte Carlo Simulation Code FLUKA
Background: For preclinical evaluations of radiopharmaceuticals, most studies are carried out on mice. Values of electron specific absorbed fractions (SAF) have had vital role in the assessment of absorbed dose. In past studies, electron specific absorbed fractions were given for limited source target pairs using older reports of human organ compositions.Objective: Electron specific absorbed fr...
متن کاملStatistical uncertainty estimation in the calculation of the proton range in water phantom.
Introduction: GATE (Geant4 Application for Tomographic Emission) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. In Geant4, each physics process is described by a model (several models are sometimes available for a given physics process) and a corresponding cross-section table. All Geant4 physics model...
متن کاملDevelopment of an Accommodation-Dependent Eye Model and Studying the Effects of Accommodation on Electron and Proton Dose Conversion Coefficients
Introduction International Commission on Radiological Protection (ICRP) has provided a comprehensive discussion on threshold dose for radiation-induced cataract in ICRP publication 116. Accordingly, various parts of the eye lens have different radio-sensitivities. Recently, some studies have been performed to develop a realistic eye model with the aim of providing accurate estimation of fluence...
متن کاملAccuracy Evaluation of Oncentraâ„¢ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code
Background: HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computat...
متن کامل